Do not trust these specs, there are numerous faults in them.
Trust the physical explanations.
Also i would like to precise this:
Kv (like i write it to express K(onstant) suffix V(oltage)) has to be given in SI Units rad/s/V to get the reciprocal Km in Nm/A. Of course, losses and load conditions are not taken into account.
What makes a well-designed engine can be very different, depending on its intended use.
Sometimes the weight per torque plays a very decisive role, this would result in very short outer rotors with a very large diameter, largely hollow inside.
But we can’t afford that under water.
However, the formula T ~ D * D * L allows us to compare compact inner and outer rotors. It has nothing to do with the winding itself, but with the ability to conduct the magnetic field over a certain area. This area is multiplied by the lever arm. This gives the relationship T proportional to D * D * L. The ability to conduct the magnetic field through the air gap is limited by the magnetic field strength inside the corresponding iron parts of the rotor and stator and is a physical limitation of the iron, the saturation. If it gets too strong (1 Tesla could be seen as a limit), the field will stray (or short cut) too much due to saturation and the efficiency will go down dramatical.
All these and many more effects have to be considered to build or choose the most compact and powerful motor for our/your special needs.
If you want to use an inrunner with gear, always have a look at the corresponding ungeared outrunner solution to make a comparison for cost, efficiency and weight. I get 3.2kW out of a simple APS 6384 PG 100Kv with 1kg weight, being very well cooled, so i can run it at minimum 80A motor current (RMS) continuously. It is performing far away from its structural ability because of rather low RPM, but for the torque and current it is always at the limit.
This leads us back to the original title of this thread i do not want to miss:
If you try to dimension everything to run at a dutycycle of 100%, you will loose a lot of efficiency on the prop side. You need a very small propeller to get rid of the need to limit the current, so if the prop would be overloaded by low vessel speed, it just keeps spinning with very high RPM at full throttle, cavitating or at least thrusting with low efficiency.
So lets make a conclusion: You have a typical machine, and if somewhere a part is too weak you either can overdimension it or you protect it. Protection by sensing and control is successful design. Electrical Fuse instead of mechanical overload clutch. Current limitation instead of fuse. Current limitation instead of clutch. Current limitation instead of small propellers. Current Limitation instead of low pitch propellers.
All this current limitation implies that the switching losses can be accepted from different viewpoints like maximum power, efficiency, cooling, etc.
The switching losses are proportional to U * I * f. In an ideal world, f would drop down to the motors frequency much lower than usual pwm frequencies from 5-40kHz to realize sensorless control by phase current sensing shunts added to voltage measurement. So these losses would go partly away. Unfortunately we would need sensors to get away from the need to pwm.
So last conclusion: The question is qualified, the answer is complex. A lot of clever people will work on the optimization of physical and electrical systems in the future. Lets give them some hints. Add some links please. You put me on this lane together.